Ansonsten ist der Planer/Installateur hin- und hergerissen zwischen „Unterversorgung“ oder „Überdimensionierung“ (der Rohrleitungen). Ersteres wäre schlecht für den Nutzer, wenn beispielsweise die Dusche im Bad beim gleichzeitigen Salat-Waschen in der Küche nur noch tröpfelt. Die Überdimensionierung der Rohrweiten wiederum ist wegen des Stagnationsrisikos (und damit der Gefahr von Verkeimung) hygienisch bedenklich.
Widerstandsbeiwerte bestimmen die Auslegung
Die genaue Beachtung der Widerstandsbeiwerte ist deshalb so wichtig, weil der Widerstand respektive der Druckverlust in einer Rohrleitung überproportional steigt, je kleiner der Innendurchmesser des Rohres ist: Bei gleichem Volumenstrom und entsprechend erhöhter Fließgeschwindigkeit ist die „bremsende“ Wirkung querschnittverengender Verbinder in kleiner dimensionierten Rohren größer als in weiteren Nennweiten. Verringert man beispielsweise den Rohrinnendurchmesser von 13 auf 11 mm, steigt der Druckverlust unter ansonsten gleichen Bedingungen von knapp 14 mbar auf über 30 mbar!
Es gilt also der planerische Grundsatz: Je knapper eine Trinkwasser-Installation dimensioniert ist (was ja auch gemäß DIN 1988-300 durchaus erwünscht und gewollt ist), desto bedeutender werden die Widerstandsbeiwerte aller Bauteile für die Auslegung! Wie viel das ausmachen kann, zeigen die individuellen Zeta-Werte diverser Bauteile aus verschiedenen Kunststoffrohrsystemen im Vergleich zu denen eines metallenen Rohrleitungssystems (hier: Kupfer):
Der Vergleich der Zeta-Werte zeigt dabei zweierlei: Zum einen weichen die Werte innerhalb der Systeme aus Mehrschichtverbundrohren (Kunststoff) bei gleich dimensionierten Bauteilen recht deutlich voneinander ab. Zum anderen haben die Formteile aus Kupfer ausnahmslos deutlich bessere Zeta-Werte als die aller kunststoffbasierten Systeme. Entscheidender Grund dafür ist die eingangs bereits angesprochene konstruktive Art der Verbinder: Entweder wird das Rohr in den Verbinder gesteckt – wie bei Kupferrohrsystemen – der freie Durchfluss bleibt erhalten, oder das Rohr wird, für Kunststoffsysteme typisch, durch eine Steckhülse / einen Stützkörper des Fittings stabilisiert. Das reduziert den Querschnitt deutlich, und der Zeta-Wert der Verbinder ist entsprechend ungünstiger.
Der Werkstoff macht den Unterschied
Über die Konzentration auf die Zeta-Werte von Verbindern gerät in der fachlichen Betrachtung im Übrigen ein Nebenaspekt häufig in Vergessenheit, der aber zwingend zum Kontext „Druckverluste in Heizungs- und Sanitärinstallationen“ dazugehört: der Werkstoff des zugrunde liegenden Rohrleitungssystems. In den technischen Datenblättern der Installationsrohr-Hersteller wird dafür in der Regel nicht die Rohrreibungszahl Lambda (λ) angegeben, sondern der sogenannte k-Wert für die technische Rauheit des Materials (in Millimeter). Je höher dieser k-Wert ist, desto mehr Widerstand setzt er dem Medium entgegen und umso höher ist damit der Druckverlust.
Im Vergleich weisen beispielsweise gezogene und gepresste Rohre aus Kupfer oder Messing die niedrigsten k-Werte aus. Sie liegen bei Werten bis zu 0,0015 mm. Kunststoffrohre, wie das für Trinkwasser-Installationen häufig eingesetzte Polyethylen (PE), haben k-Werte von etwa 0,007. Sie sind also etwa 4,6mal rauer als Kupfer. Ein Kunststoffrohr-Hersteller nennt für seine Produkte gar k-Werte von 0,01; das entspricht fast Faktor 7! Von diesem Ausreißer abgesehen gilt aber generell, dass der k-Wert von PE-Rohren im Laufe der Nutzung auf 0,03 mm ansteigt. Mit der Nutzungsdauer erhöhen sich also die Druckverluste in solchen Installationen.
Übrigens: Diese Ausführungen gelten genauso für Heizungsinstallationen. Je geringer der Druckverlust in den Systemen ist, desto weniger Leistung muss die Pumpe für den nötigen Druckaufbau liefern. Das spart Energie, vor allem bei Betrachtung des kompletten Lebenszyklus einer Heizungsanlage.